Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Int J Biol Macromol ; 226: 946-955, 2023 Jan 31.
Статья в английский | MEDLINE | ID: covidwho-2286096

Реферат

The coronavirus disease 2019 has been ravaging throughout the world for three years and has severely impaired both human health and the economy. The causative agent, severe acute respiratory syndrome coronavirus 2 employs the viral RNA dependent RNA polymerase (RdRp) complex for genome replication and transcription, making RdRp an appealing target for antiviral drug development. Systematic characterization of RdRp will undoubtedly aid in the development of antiviral drugs targeting RdRp. Here, our research reveals that RdRp can recognize and utilize nucleoside diphosphates as a substrate to synthesize RNA with an efficiency of about two thirds of using nucleoside triphosphates as a substrate. Nucleoside diphosphates incorporation is also template-specific and has high fidelity. Moreover, RdRp can incorporate ß-d-N4-hydroxycytidine into RNA while using diphosphate form molnupiravir as a substrate. This incorporation results in genome mutation and virus death. It is also observed that diphosphate form molnupiravir is a better substrate for RdRp than the triphosphate form molnupiravir, presenting a new strategy for drug design.


Тема - темы
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , RNA , Diphosphates , Nucleosides , RNA-Dependent RNA Polymerase/metabolism , Antiviral Agents/chemistry , Nucleotides , RNA, Viral/genetics , Eye Proteins , Nerve Tissue Proteins
2.
Anal Bioanal Chem ; 414(19): 5907-5915, 2022 Aug.
Статья в английский | MEDLINE | ID: covidwho-1899133

Реферат

In this paper, we report a molecular diagnostic system-combining a colorimetric probe (RHthio-CuSO4) for pyrophosphate sensing and isothermal gene amplification (ramified rolling circle amplification)-that operates with high selectivity and sensitivity for clinical point-of-care diagnosis of SARS-CoV-2. During the polymerase phase of the DNA amplification process, pyrophosphate was released from the nucleotide triphosphate as a side product, which was then sensed by our RHthio-CuSO4 probe with a visible color change. This simple colorimetric diagnostic system allowed highly sensitive (1.13 copies/reaction) detection of clinical SARS-CoV-2 within 1 h, while also displaying high selectivity, as evidenced by its discrimination of two respiratory viral genomes (human rhino virus and respiratory syncytial virus) from that of SARS-CoV-2. All of the reactions in this system were performed at a single temperature, with positive identification being made by the naked eye, without requiring any instrumentation. The high sensitivity and selectivity, short detection time (1 h), simple treatment (one-pot reaction), isothermal amplification, and colorimetric detection together satisfy the requirements for clinical point-of-care detection of SARS-CoV-2. Therefore, we believe that this combination of a colorimetric probe and isothermal amplification will be useful for point-of-care testing to prevent the propagation of COVID-19.


Тема - темы
COVID-19 , COVID-19/diagnosis , Colorimetry , Diphosphates , Humans , Nucleic Acid Amplification Techniques , Point-of-Care Systems , Point-of-Care Testing , RNA, Viral , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Статья в английский | MEDLINE | ID: covidwho-1343703

Реферат

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Тема - темы
Nidovirales/enzymology , Nucleotides/metabolism , Protein Domains , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Catalytic Domain , Coenzymes/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Diphosphates/pharmacology , Diphosphonates/pharmacology , Guanosine Triphosphate/metabolism , Manganese , Models, Molecular , Nidovirales/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Uridine Triphosphate/metabolism
Критерии поиска